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CHAPTER

Transfer Function

2.1 TRANSFER FUNCTION AND IMPULSE RESPONSE FUNCTION

In control theory, transfer functions are commonly used to characterise the input-output relationships of
components or systems that can be described by linear, time-invariant differential equations.

Transfer Function

The transfer function of a linear, time-invariant, differential equation system is defined as the ratio of the
Laplace transform of the output (response function) to the Laplace transform of the input (driving function) under
the assumption that all initial conditions are zero.

Transfer Function of Open Loop System :

R [ |-

Transfer Function of Closed Loop System :

Transfer function of closed loop system

As) G Ris—HSQEEL [ 6s) Cls)
R(S) 1+ Gs)H(s) F1FGs)
s) = Reference input
R( P o) ]
C(s) = Controlled output L
E(s) = Actuating error signal

) =
)
)
)
)
)

G(s) = Forward path transfer function
H(s) = Feedback path transfer function
C(s) = G(s)E(s)

G(s)[R(s) = C(s)H(s)] = G(s)[R(s) = G(s)C(s)H(s)
C(s) = G()H(s)C(s) = G(s)R(s)

as) - G

Rs)  1£Gs)H(s)

MRDE ERSYH www.madeeasypublications.org solveghﬁ?é‘inﬁfgé
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Shortcut Method

1. Tofind close loop transfer function from open loop transfer function

If O.LTF = _Numerator
Denominator
Then. CLTE - .Numerator
Denominator + Numerator
2. Tofind open loop transfer function from close loop transfer function
If C.LTF = _Numerator
Denominator
Then. OLTE = Nurmerator

Denominator — Numerator

Linear Systems

A systemis called linear if the principle of superposition and principle of homogeneity apply. The principle
of superposition states that the response produced by the simultaneous application of two different forcing
functions is the sum of the two individual responses. Hence, for the linear system, the response to several inputs
can be calculated by transferring one input at a time and adding the results. It is the principle that allows one to
build up complicated solutions to the linear differential equations from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are proportional, thus implying
that the principle of superposition holds, then the system can be considered as linear.

Linear Time-Invariant Systems and Linear-Time Varying Systems

A differential equation is linear if the coefficients are constants or functions only of the independent
variable. Dynamic systems that are composed of linear time-invariant lumped-parameter components may be
described by linear time-invariant differential equations i.e. constant-coefficient differential equations. Such systems
are called linear time-invariant (or linear constant-coefficient) systems. Systems that are represented by differential
equations whose coefficients are function of time are called linear time varying systems. An example of a time-
varying control system is a space craft control system (the mass of a space craft changes due to fuel consumption).

The definition of transfer function is easily extended to a system with multiple inputs and outputs (i.e. a
multivariable system). In a multivariable system, a linear differential equation may be used to describe the
relationship between a pair of input and output variables, when all other inputs are set to zero. Since the principle
of superposition is valid for linear systems, the total effect (on any output) due to all the inputs acting simultaneously
is obtained by adding up the outputs due to each input acting alone.

EXAMPLE : 2.1 When deriving the transfer function of a linear element
(a) both initial conditions and loading are taken into account.

(b) initial conditions are taken into account but the element is assumed to be not
loaded.

(c) initial conditions are assumed to be zero but loading is taken into account.

(d) initial conditions are assumed to be zero and the element is assumed to be
not loaded.

Solution : (c)

While deriving the transfer function of a linear element only initial conditions are assumed
to be zero, loading (or input) can’t assume to be zero.

MRDE ERSYH www.madeeasypublications.org solveghﬁﬁgnﬁgé
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EXAMPLE : 2.2 If the initial conditions for a system are inherently zero, what does it physically
mean?

(a) The system is at rest but stores energy

(b) The system is working but does not store energy

(c) The system is at rest or no energy is stored in any of its part
(d) The system is working with zero reference input

Solution : (c)

A system with zero initial conditions is said to be at rest since there is no stored energy.

2.2 STANDARD TEST SIGNALS

rt)
1. Step Signal
ft) = Au(t) A
here, unit step signal (1) 1120
w uni i u(t) =
’ PSig 0,t<0 5 t
Laplace transform, R(s) = Als nt)
2. RampSignal
() = At t=20
|0 t<o0
Laplace transform, R(s) = A/s? - t
3. Parabolic Signal
2
) = Atc/2 ,t20
0 , <0
Laplace transform, R(s) = A/s® t
4. Impulse Signal r(t)
o =0 Hoo -
r(t) = ’ ; 3(t)dt =1
() {o oy £ )
Laplace transform, R(s) =1 =0 ;
Transfer function, G(s) = @
A(s)
C(s) = F(s) R(s)
Let, R(s) = Impulse signal = 1
C(s) = Impulse response = G(s) x 1 = Transfer Function
C
£ {Impulse Response} = Transfer function = s
R(s)
MRDE ERSYH www.madeeasypublications.org Theory with
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—— e Td/dt(Parabolic Response) = Ramp Response
e d/dt(Ramp Response) = Step Response

NOTE

l e Jd/dt(Step Response) = Impulse Response

Consider, a linear time-invariant system has the input u(t) and output y (). The system can be characterized
by its impulse response g(t), which is defined as the output when the input is a unit-impulse function §(¢). Once
the impulse response of a linear system is known, the output of the system y(t), with any input u(t), can be found
by using the transfer function.

Let G(s) denotes the transfer function of a system with input u(t), output y(t), and impulse response g(t).
The transfer function G(s) is defined as

LIy ()]

_ Y(s)
Llu(t)]

initial conditions— 0 U(S)

G(s) = £[g(®)]

Sometimes, students do a common mistake, they first find y(t)/u(t) and then take its Laplace
transform to determine the transfer function which is absolutely wrong. Because,

)= T® = 2o~ Lo

2.3 POLES AND ZEROS OF A TRANSFER FUNCTION

The transfer function of a linear control system can be expressed as

G(S) — A(S) — K(S — S1) (S ~ 32) (S ~ Sn)

B(s) (s—s,)(s=5p)...(s=sp)

where Kis known as gain factor of the transfer function G(s).

In the transfer function expression, if sis put equalto s,, s, ... s, then it is noted that the value of the
transfer function is infinite. These s, s, ... s, are called the poles of the transfer function.

In the transfer function expression, if sis put equal to s;, s, ... s, then it is noted that the value of the
transfer function is zero. These s,, s, ... s, are called the zeros of the transfer function.

2.3.1 Multiple Poles and Multiple Zeros

Thepoles s, s, ... s, or the zeros s,, s, ... s, are either real or complex and the complex poles or zeros
always appear in conjugate pairs.

It is possible that either poles or zeros may coincide; such poles or zeros are called multiple poles or
multiple zeros.

2.3.2 Simple Poles and Simple Zeros

Non-coinciding poles or zeros are called simple poles or simple zeros. From the transfer function expression,
it is observed that
e If n> m, then the value of transfer function is found to be infinity for s = . Hence, it is concluded
that there exists a pole of the transfer function at infinity (eo) and the multiplicity (order) of such a pole
being (n—m).

MRDE ERSYH www.madeeasypublications.org So]veghg‘)’(gn‘glig;
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e If n< m, thenthe value of transfer function is found to be zero for s = . Hence, it is concluded that
there exists a zero of the transfer function at infinity (e) and the multiplicity (order) of such a zero
being (m-n).

Therefore, for a rational transfer function the total number of zeros is equal to the total number of poles.
The transfer function of a system is completely specified in terms of its poles, zeros and the gain factor.
Consider the following transfer function:
s$+3

(8+2)(s+1+3))(s+1-3))

For the above transfer function, the poles are at :

(@ s,=-2, (b) s,=-1-3jand (c) s,=-1+3/

a

G(s) =

The zeros are at s, = -3.

As the number of zeros should be equal to number of poles, the remaining two zeros are located at s = .
The pole-zero plot is plotted as shown:

+Ho
X i
X denotes pole “ C o i
O denotes zero -c 3 o I +c
X---— 3
—jo

Fig. : Pole-zero plot

Note : Poles and zero are those complex/critical frequencies which make the transfer function infinity or
Zero.

2.3.3 Proper Transfer Functions

The transfer functions are said to be strictly proper if the order of the denominator polynomial is greater
than that of the numerator polynomial (i.e. m > n). If m = n, the transfer function is called proper. The transfer
function is improper if n > m.

In the transfer function expression of a control system, the highest power of sin the numerator is generally either
equal to or less than that of the denominator.

EXAMPLE : 2.3 A transfer function has two zeros at infinity. Then the relation between the
numerator degree (N) and the denominator degree (M) of the transfer function is

(@) N=M+2 (b) N=M-2

(c) N=M+1 (d) N=M-1

Solution : (b)

For a rational transfer function, the total number of zeros are equal to total number of poles.
Therefore, Number of poles = M; Number of zeros = N + 2

For arational transfer function: M = N+2 or N=M-2

MRDE ERSYH www.madeeasypublications.org Theory with
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2.4 PROPERTIES OF TRANSFER FUNCTION

The properties of the transfer function are summarized as follows:

1.

The transfer function is defined only for a linear time-invariant system. It is not defined for non-linear
or time variant systems.

The transfer function between an input variable and an output variable of a system is defined as the
Laplace transform of the impulse response. Alternately, the transfer function between a pair of input and
output variables is the ratio of the Laplace transform of the output to the Laplace transform of the input.
All initial conditions of the system are set to zero.

Transfer function is independent of the input of the system.

The transfer function of a continuous-data system is expressed only as a function of the complex
variables. It is not a function of the real variable, time, or any other variable that is used as the
independent variable or discrete-data system modelled by difference equations, the transfer function
is a function of Z, when the Z-transform is used.

If the system transfer function has no poles or zeros with positive real parts, the system is a
minimum phase system.

Non-minimum phase functions are the functions which have poles or zeros on right hand
side of s-plane.

The stability of a time-invariant linear system can be determined from its characteristic equation.

Characteristic equation: The characteristic equation of a linear system is defined as the equation
obtained by setting the denominator polynomial of the closed loop transfer function to zero.

EXAMPLE : 2.4 State and explain minimum phase and non-minimum phase transfer functions

with examples.
Solution :
Minimum phase transfer function:

= Transfer functions which have all poles and zeros in the left half of the s-plane, i.e.,
system having no poles and zeros in the RHS of the s-plane are minimum phase
transfer functions.

= Onthe other hand, a transfer function which has one or more zeros in the right half
of s-plane is known as “non-minimum phase transfer function”.

Let Gy(s) = N
1+ 7T,
. 1+ joT, .
= Gyjo) = 121 )
1+ joT,
| 1- joT, ’
and G = — (i
o(j) o, (ii)

The transfer function given by equation (i) represents the minimum-phase transfer
function and equation (ii) represents the non-minimum phase transfer function.

= The pole-zero configuration of above transfer function as given by equation (i) and
(ii) may be drawn as:

MRDE ERSYH

www.madeeasypublications.org solveghﬁ?ﬁnﬁfi
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Img Img
G,(jo) G,(jo)
Pole Zero
a3 O Re * O Re
-1 =1 0 I |
T, T T, T

= The minimum phase function has unique relationship between its phase and
magnitude curves. Typical phase angle characteristics are shown below:

¢
0°

G, (Joo)
-90°+

Gy(jw)

-180°

w
= It will be seen that larger the phase lags present in a system, the more complex are
its stabilization problems. Therefore, in control systems, elements with non minimum
phase transfer function are avoided as far as possible.
= A common example of a non-minimum phase system is “transportation lag” which
has the transfer function,
G(jw) = e¥T=1/-wT Radian

1£-57.3wT degree

2.5 METHODS OF ANALYSIS

Methods of analysis of a system involves:
(a) Transfer function approach
(b) State variable approach

Many a times in interviews the relative comparison of these two approaches has been asked,
which we will understand during the study of state variable analysis.

2.5.1 Advantages of Transfer Function Approach

1. It gives simple mathematical algebraic equation.
2. It gives poles and zeros of the system directly.
3. Stability of the system can be determined easily.
4. The output of the system for any input can be determined easily.
MRDE ERSYH www.madeeasypublications.org So]veghg‘)’(gn‘glig;
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L3

Q1 A control system with certain excitation is
governed by the following mathematical equation

d’x 1 dx

+——+—

a2 2 dt

natural time constants of the response of the

system are

(@) 2sandbs

(c) 4sandbs

soonracwace P

Using equation (i) when input is u(t), output is

Taking inverse Laplace transform,

So,

Using final value theorem

=

His+c) Ki, D E
S(s+a)(s+b) s s+a s+b
Output = 2 + De! + Ee™3!
a=1 and b=3

S-Hs+c) "
S s+a)s+h ~ (m2+Det+ke
E =2 and Hc=6

ab

H(s+c)

Control Systems
Transfer Function 2 1

Using equation (i) when input is e2!u(1), output is (5+2)

Only two terms are present in the response.

(s+a)(s+b)

Hence S+C=58+2
= c =2

H=3 (- HC=6)
OBJECTIVE Q3 The frequency response of a linear time-invariant

BRAIN TEASERS

x=10+15e* +2e™ . The y

(b) 3sand6s

1 1 X,(s)
—s and —s 1
(d) 3 6

Q2 Theresponse g(t)of alinear time invariant system
to animpulse &(t), under initially relaxed condition
is g(t) = et + 72l The response of this system

for a unit step input u(?) is

(@ (1+ e+ e?Hu(t)

system is given by H(f) =
response of the system is
(@ 5(1-e®Yu(t)

© g(1-e™)ut) (@

5
2 Thest
T3 flonf 1C 5P

(b) 5(1—6’”5)u(t)

1

) 5+5 )
Q4 For the following system :

Xy(s)

Y(s)

s+ 1

[ZY=N

Y(s)

when X,(s) = 0, the transfer function Xo(s) is

23

s+1 1
(b) (e'+eNu(l) (a) &2 (b) S+
(c) (1.5-et-0.5e2u(t) ) S+ 1
(d) e'8(t) + e2tu(t) ©) Ss+9) S5+2)
MRDE ERSY Theory with
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Q5 Ramp response of the transfer function Q10 If a system is represented by the differential
s+1 . d? d
F(s) = i i ay 9y -
(s) s+ 0 IS equation, is of the form o +6 o +9y =r(t)
@ ~-tezilt o) lezilily () ket +ke® (b)) (k + ke
4 4 2 4 4 2 .
. 1 1 (c) ke3tsin(t+¢) (d) te3tu(t)
© - Ee—m oo 3 e + 5! Q11 A linear system initially at rest, is subject to an
i i — 1 _ ot
Q6 Which of the following statements are correct? input signal r(t) = 1-e7 (1= 0). The response
_ , of the system for t > O is given by ¢(t) = 1 - e 2L,
1. Transfer function can be obtained from the , ,
. The transfer function of the system is
signal flow graph of the system.
2. Transfer function typically characterizes to (a) (5+2) (b) (S+;)
linear time invariant systems. (s+7 (5+2)
3. Transfer function gives the ratio of output to ©) 2s+1) ) (s+1)
input in frequency domain of the system. (s+2) 2s+2)
(@ 1and2 (b) 2and 3 Q.12 Consider the RC circuit shown in figure below:
(c) 1and3 (d) 1,2and 3 AvA\"ZrAv ‘v‘i‘v
Q7 Which of the following is not a desirable feature /,e ﬂ\
of a modern control system? e\c - TC¢ j“
(@) Quickresponse
(b) Accuracy The transfer function Eo(s) will be (T = RC)
(c) Correct power level i(9)
(d) Oscillations % %
Q8 Inregenerating feedback, the transfer function TS+ 2ts+1 TS J;STSH
. . T s
is given b c) —>—— -
? / ) 1252 + 215 +1 1°5% + 315+ 1
(a) gésg :1 66((8))/_/( ) Q.13 The pole-zero configuration of a transfer function
S S)H(s
" is shown in figure. The value of transfer function
(b) As) _ _Gls) Hs) at s = 1 is found to be 4. Then the transfer
Rls) 1-Gls) Hls) function of system is
©) As) __Gs)H(s) Jo
R(s) 1+ G(s)H(s)
« As)__ Gs) .
R(s) 1-G(s)H(s) 6 4 3 -2
Q9 The principle of homogeneity and superposition
are applied to
(a) linear time variant systems 12(s+3) () 15(s+3)
(b) non-linear time variant systems S(s+2)(s+4) s(s+2)(s+4)
(c) linear time invariant systems ©) 4(s+3) ( _10(s+2)
(d) non-linear time invariant systems S(s+2)(s+4) S(s+3)(s+4)
MRDE ERSY Theory with
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Q.14 The transfer function of a system is given by

C(s) 100 .
= > , using the concept
R(s) (s+10)(s* +2s+1)
of dominant pole, the 2nd order approximation 1. (b)
of above transfer function is 6. (d)
100 ) 10 1. (0
2 s? +25+1
s +25+1 16. (b)
10 100
d
©) s+10 @ (s+10)

Control Systems
Transfer Function

23

ANSWER KEY
2. (q) 3. (b) 4. (d) 5. (a)
7. (d) 8. (d) 9. (0 10. (d)
12, (b) 13. (b) 14. (b) 15. (b,d)

17. (o)

Q.15 A differentiator has a transfer function whose
(a) Magnitude decreases linearly with frequency
(b) Magnitude increases linearly with frequency
(c) Phaseincreases linearly with frequency

(d) Phase is constant

Q.16 The pole-zero plot of a system is given below. If
G(s) = 15 for s = 2, then the transfer function of
the system is

Jo
O -1 J
) —1;” 0 N
S
@) 12(s® +25+5) 18(s® +25+2)
(s+1(s+2) (s+1)(s+2)
© 12(s® +25+3) 6(s® + 25+ 3)
(s+N(s+2) (s+N)(s+2)
Q.17 A linear time invariant system initially at rest,

when subjected to unit step input gives a
response of 2te™ t > 0, the corresponding
transfer function is

2 2s
@) s(s +5)° ©) (s+5)
2s 2s
d
(©) 5157 (d) 5_57

HINTS & EXPLANATIONS

K ©

Natural time constants of the response depend
only on poles of the system.
T(s) = as)
R(s)
;
s® +s/2+1/18
1’
185% + 9s + 1
1
(6s+ 1) (3s+1)
1
(1+sTy) (1+ sT)

T, T, = 6 sec, 3 sec.

This is in the form

B
Transfer function of system is impulse response

of the system with zero initial conditions.

Transfer function = G(s) = [;(e*f +e’2t)

S
s+1 s+2
C(s) 1 1
Gle) = R(s) _(s+1+ S+ 2)
For step input, R(s) = 1
s

s\s+1 s+2

C(s) = R(s)- G(s) = _(L+Lj
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Y(s) K(22 +2(2) + 2)
S) = =S G = 15 =
A9 = X (s) 2+9)2+2)
Put s = jo, _ K < 15x3x4 B
H(jw) = jo B - 10
IH(jo)| = ® Therefore, transfer function of the system is given
as,
ZH(jw) = 90° (always) )
So, it is constant with w.r.t. frequency. G(s) = 18(s” +25+2)
(s+1(s+2)
16 [
@
Poles : -1, -2
, , Given:  y(t) = 2te ™t
Zeros:—1+/j,-1—]j
S x(t) = u(?)
.. Transfer function is given by, ,
Taking Laplace transform, we get,
K((s+1)%+1)
G(s) = ————, 2 1
(s+)(s+2) Y(s) = > and X(s)= -
o (s+5) s
where gain is assumed to be K
5 .. Overall transfer function,
(s) = K(s“+2s5+2)
T (s+1)(s+2) ;((3; __2s _
S
ats=2, G(s)=15 (s+5)
4) CONVENTIONAL BRAIN TEASERS
Q1 Determine the transfer function, G(s) = % for the network shown below using mesh analysis.
2Q 20
——WW—
1F
20 +
v(t) Cj) 2H % vi(9)
1F
T
1. [0
For the given network assuming loop current as shown in figure.
Writing mesh equation using KVL,
-V(s)+2I,(s) + % +(14(8) = I,(s)) (2 + 5 =0
2 1
Ws) = (4+§j 11(3)—(2+§) 1,(S) (1)
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Similarly, (2 +2s) I,(s) + (2 + 5 (I,(s)-I(s)) =0

(4+23+1j I5(8s) —(2 +l) I,(s)
S S

—(2 +l) 11(s)+(4+23+1) 1,(s)
5 s

Eliminating 7,(s) using equation (2),

soonracwace P

1/s
2Q
0 V(s) 1) @ @ ZS§VL(S)
1/s

0 (2)

Control Systems
Transfer Function

27

20
——\W—

2Q

T

(4+2s+ 1) 15(s)

S

45+ 25° +1
11(3) = ( 1) _( 25 + 1 ]'12(3)
2+ —
s
2
Substituting equation (1), V(s) = (4+§) [%} 12(s)—(2+%j I,(s)
45+2 [ 4s+25° +1 2s+1
V(s) = - I
(s) S [ oot J2() ( j2(3)
Ws) = %(4s+232+1)12(s)—(23 )
2, 5 _ oa_ 2
Vs) = (8s+4s ;2 2s-1) 1,(s) = 48+76S+1]2(S)
I)(s) S
V(s) 45° + 65+ 1
2812(8) — 232 _ VL(S)
V(s) 4s® +6s+1  V(s)
EEEN
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